Regulating potassium storage kinetics in mesoporous carbon spheres via delicate inner structural design

APPLIED SURFACE SCIENCE(2024)

引用 0|浏览0
暂无评分
摘要
Carbon materials have been considered to be potential anodes for potassium-ion batteries (PIBs). Different strategies, including designing micro-/nano-structure and porous morphology, introducing heteroatom doping, and creating carbon-based hybrids, have been employed to improve the potassium ion transport kinetics. Nevertheless, it is still a challenge to achieve satisfactory potassium storage performance due to the uncontrolled reaction kinetics of the large-sized potassium ions. Herein, we successfully synthesized mesoporous carbon spheres (MCSs) with tunable internal morphology and structure by using sacrificed template method. The optimized MCSs with novel half inner-shell structures (HIS-MCSs) show excellent electrochemical performance when used as the anode for PIBs. Specifically, a reversible specific capacity of 241.2 mAh/g is achieved at a current density of 0.1 A/g. Even at 5.0 A/g, a reversible specific capacity of 120 mAh/g can still be reached. Long-term stability tests show that the electrode holds a capacity of 166.5 mAh/g after 1000 cycles at 1.0 A/g. The good cycling stability and rate performance of the HIS-MCSs electrode are attributed to the well-defined inner structural design, in which the contribution from ion diffusion and pseudo-capacitance process are compromised.
更多
查看译文
关键词
Mesoporous carbon spheres,Inner -shell structure,Pseudo -capacitance,Ion diffusion,Potassium ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要