谷歌浏览器插件
订阅小程序
在清言上使用

Self-assembly plasmonic gold nanoribbons on few-layer PtSe2 under femtosecond laser irradiation

APPLIED PHYSICS LETTERS(2024)

引用 0|浏览4
暂无评分
摘要
Functional two-dimensional (2D) materials have been extensively explored for a wide range of applications such as energy generation, low-power computing, and biosensing. In this work, we present an approach involving the integration of six-layer platinum diselenide (PtSe2) as an interlayer between the thin gold film and SiO2 substrate to induce spontaneous formation of plasmonic nanostructures (nanoribbons) on the upper gold film (similar to 8 nm) under 1030 nm femtosecond laser irradiation. The formation of periodic nanostructures is attributed to the periodic energy deposition that occurs in the PtSe2 layers under intense femtosecond laser pulses. Notably, the self-assembled gold nanostructures exhibit a distinctive polarization-dependent plasmonic response in the near-infrared spectral region and could be directly fabricated in a centimeter scale within several minutes. This straightforward method for self-assembling plasmonic nanostructures using layered materials may expand the utility of functional 2D materials and advance the cost-effective and large-area fabrication of plasmonic thin-film nanostructures in a simplified manner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要