Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea

Science of The Total Environment(2024)

引用 0|浏览0
暂无评分
摘要
Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that blaCTX-M is the dominant ESBL gene type found in South Korea. The spread of blaCTX-M appears to have been facilitated by both clonal spread between different host species and conjugation. Most blaCTX-M genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of blaCTX-M-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.
更多
查看译文
关键词
Antibiotics resistance,Vertical gene transfer,Horizontal gene transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要