Proton Free Induction Decay MRSI at 7T in the Human Brain Using an Egg-Shaped Modified Rosette K-Space Trajectory.

medRxiv : the preprint server for health sciences(2024)

引用 0|浏览3
暂无评分
摘要
Purpose:1.1 Proton ( 1 H)-MRSI via spatial-spectral encoding poses high demands on gradient hardware at ultra-high fields and high-resolutions. Rosette trajectories help alleviate these problems, but at reduced SNR-efficiency due to their k-space densities not matching any desired k-space filter. We propose modified rosette trajectories, which more closely match a Hamming filter, and thereby improve SNR performance while still staying within gradient hardware limitations and without prolonging scan time. Methods:1.2Analytical and synthetic simulations were validated with phantom and in vivo measurements at 7 T. The rosette and modified rosette trajectories were measured in five healthy volunteers in six minutes in a 2D slice in the brain. A 3D sequence was measured in one volunteer within 19 minutes. The SNR, linewidth, CRLBs, lipid contamination and data quality of the proposed modified rosette trajectory were compared to the rosette trajectory. Results:1.3Using the modified rosette trajectories, an improved k-space weighting function was achieved resulting in an increase of up to 12% in SNR compared to rosette's dependent on the two additional trajectory parameters. Similar results were achieved for the theoretical SNR calculation based on k-space densities, as well as when using the pseudo-replica method for simulated, in-vivo and phantom data. The CRLBs improved slightly, but non-significantly for the modified rosette trajectories, while the linewidths and lipid contamination remained similar. Conclusion:1.4By improving the rosette trajectory's shape, modified rosette trajectories achieved higher SNR at the same scan time and data quality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要