Studies on the biological role of the antifungal protein PeAfpA from Penicillium expansum by functional gene characterization and transcriptomic profiling

International Journal of Biological Macromolecules(2024)

引用 0|浏览0
暂无评分
摘要
Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium°expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.
更多
查看译文
关键词
Antifungal protein (AFP),Penicillium expansum,PeAfpA,Biological function,Null mutant,Transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要