Experimental study of the new composite materials for thermochemical energy storage

Energy(2024)

引用 0|浏览2
暂无评分
摘要
Thermochemical energy storage (TCES) is a promising technology to support the world's initiatives to reduce CO2 emissions and limit global warming. In this paper, we have synthesized and characterized a new three-component composite materials consisting of a mixture of calcium chloride and iron powder confined inside the expanded vermiculite. The new approaches of studying composite sorbents of ammonia using a gas flow-through microcalorimetry proposed in this work. The energetics of adsorption as a function of ammonia uptake was measured at room temperature (RT), 106 and 150 °C. The enthalpy of NH3 sorption in eight cycles tested ranged from 12.2 to 39.1 kJ mol−1. The strength of ammonia sorption on composite surface was characterized by TPD (Temperature Programmed Desorption). Based on the NH3-TPD profiles of composites it was found that the high-temperature desorption peaks of vermiculite sample shifted to lower temperature after the deposition of salt. The characterization of the composites was complemented by the laboratory analyses using XRD, WD-XRF, FTIR, TG/DTG, SEM-EDS and nitrogen sorption isotherms at −196 °C (BET method). The composite impregnated with 37 wt.% of salt has the highest enthalpy and sorption capacity, thus seems to be the most promising candidates for the heat storage systems.
更多
查看译文
关键词
Energy storage,Enthalpy,TPD,NH3 adsorption,Composites,Vermiculite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要