Computing large deviation rate functions of entropy production for diffusion processes in the vanishing-noise limit and high dimensions by an interacting particle method

CoRR(2024)

引用 0|浏览2
暂无评分
摘要
We study an interacting particle method (IPM) for computing the large deviation rate function of entropy production for diffusion processes, with emphasis on the vanishing-noise limit and high dimensions. The crucial ingredient to obtain the rate function is the computation of the principal eigenvalue λ of elliptic, non-self-adjoint operators. We show that this principal eigenvalue can be approximated in terms of the spectral radius of a discretized evolution operator obtained from an operator splitting scheme and an Euler–Maruyama scheme with a small time step size, and we show that this spectral radius can be accessed through a large number of iterations of this discretized semigroup, suitable for the IPM. The IPM applies naturally to problems in unbounded domains, scales easily to high dimensions, and adapts to singular behaviors in the vanishing-noise limit. We show numerical examples in dimensions up to 16. The numerical results show that our numerical approximation of λ converges to the analytical vanishing-noise limit with a fixed number of particles and a fixed time step size. Our paper appears to be the first one to obtain numerical results of principal eigenvalue problems for non-self-adjoint operators in such high dimensions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要