Advanced Hollow Cubic FeCo-N-C Cathode Electrocatalyst for Ultrahigh-Power Aluminum-Air Battery

Zhidong Tian, Yiqi Liang, Kai Chen,Jiyuan Gao, Zhiwen Lu,Xiang Hu, Yichun Ding,Zhenhai Wen

SMALL(2024)

引用 0|浏览2
暂无评分
摘要
The exploration of electrocatalysts toward oxygen reduction reaction (ORR) is pivotal in the development of diverse batteries and fuel cells that rely on ORR. Here, a FeCo-N-C electrocatalyst (FeCo-HNC) featuring with atomically dispersed dual metal sites (Fe-Co) and hollow cubic structure is reported, which exhibits high activity for electrocatalysis of ORR in alkaline electrolyte, as evidenced by a half-wave potential of 0.907 V, outperforming that of the commercial Pt/C catalyst. The practicality of such FeCo-HNC catalyst is demonstrated by integrating it as the cathode catalyst into an alkaline aluminum-air battery (AAB) paring with an aluminum plate serving as the anode. This AAB demonstrates an unprecedented power density of 804 mW cm-2 in ambient air and an impressive 1200 mW cm-2 in an oxygen-rich environment. These results not only establish a new benchmark but also set a groundbreaking record for the highest power density among all AABs reported to date. Moreover, they stand shoulder to shoulder with state-of-the-art H2-O2 fuel cells. This AAB exhibits robust stability with continuous operation for an impressive 200 h. This groundbreaking achievement underscores the immense potential and forward strides that the present work brings to the field. FeCo-HNC, featuring atomically dispersed dual metal sites and a hollow cubic structure, exhibits a half-wave potential of 0.907 V. Integrated into an aluminum-air battery, it attains unprecedented power densities of 804 mW cm-2 in ambient air and 1200 mW cm-2 in an oxygen-rich environment, showcasing stability over an impressive 200 h continuous operation. image
更多
查看译文
关键词
aluminum-air batteries,atomically dual FeCo sites,hollow cubic structure,oxygen reduction reaction,ultra-high-power density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要