Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Influence of Lipid Electric Charge on the Binding of Aβ(1-42) Amyloid Peptide to Bilayers in the Liquid-Ordered State

Biomolecules(2024)

Cited 0|Views10
No score
Abstract
The amyloidogenic A beta peptides are widely considered as a pathogenic agent in Alzheimer's disease. A beta(1-42) would form aggregates of amyloid fibrils on the neuron plasma membranes, thus perturbing neuronal functionality. Conflicting data are available on the influence of bilayer order on A beta(1-42) binding to membranes. In the present study, a biophysical approach was used in which isothermal calorimetry and surface pressure measurements were applied to explore the interaction of A beta(1-42) in either monomeric, oligomeric, or fibrillar form with model membranes (bilayers or monolayers) in the liquid-ordered state that were either electrically neutral or negatively charged. In the latter case, this contained phosphatidic acid, cardiolipin, or ganglioside. The calorimetric studies showed that A beta(1-42) fibrils, oligomers, and monomers could bind and/or be inserted into bilayers, irrespective of electric charge, in the liquid-ordered state, except that monomers could not interact with electrically neutral bilayers. The monolayer studies in the Langmuir balance demonstrated that A beta(1-42) aggregation hindered peptide insertion into the monolayer, hindered insertion in the decreasing order of monomer > oligomer > fibril, and that lipid composition did not cause large differences in insertion, apart from a slight facilitation of monomer and oligomer insertion by gangliosides.
More
Translated text
Key words
A beta 42,beta-amyloid,A beta membrane binding,ganglioside,sphingomyelin,cholesterol,isothermal calorimetry,Langmuir balance,Alzheimer's disease
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined