Coherent Modulation of Two-Dimensional Moiré States with On-Chip THz Waves

arxiv(2024)

Cited 0|Views15
No score
Abstract
Van der Waals (vdW) structures of two-dimensional materials host a broad range of physical phenomena. New opportunities arise if different functional layers may be remotely modulated or coupled in a device structure. Here we demonstrate the in-situ coherent modulation of moiré excitons and correlated Mott insulators in transition metal dichalcogenide (TMD) homo- or hetero-bilayers with on-chip terahertz (THz) waves. Using common dual-gated device structures, each consisting of a TMD moiré bilayer sandwiched between two few-layer graphene (fl-Gr) gates with hexagonal boron nitride (h-BN) spacers, we launch coherent phonon wavepackets at  0.4-1 THz from the fl-Gr gates by femtosecond laser excitation. The waves travel through the h-BN spacer, arrive at the TMD bilayer with precise timing, and coherently modulate the moiré excitons or the Mott states. These results demonstrate that the fl-Gr gates, often used for electrical control of the material properties, can serve as effective on-chip opto-elastic transducers to generate THz waves for the coherent control and vibrational entanglement of functional layers in commonly used moiré devices.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined