Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Experimental Investigation of Interaction between CO2 Solution and Rock under Reservoir Conditions in the Jimsar Shale Oil Formation

Haibo He, Xinfang Ma, Fan Lei, Xinqiu Liu, Ming Jiang, Yue Li, Jianye Mou

Processes(2024)

Cited 0|Views9
No score
Abstract
Chemical sequestration is one important manner of CCUS. The injection of CO2 into an oil reservoir can not only sequestrate CO2 but also raise the oil recovery factor. The performance of chemical sequestration of CO2 depends on the interaction between CO2 solution and reservoir rock. In this paper, we have conducted three different scales of experiments, e.g., microscopic scale, core scale, and time scale, to fully investigate the interaction and resultant variation to mineral content, microscopic structure, porosity, and permeability under reservoir conditions (i.e., reservoir temperature of 90 °C) in Jimusar shale oil formation. The microscopic-scale experiment applied SEM and hyperspectral scanning to obtain microscopic pore throat structure and element distribution before and after soaking the rock in CO2 solution. The core-scale experiment employed XRD to evaluate mineral content variation caused by CO2 solution. Core flooding experiments were conducted to evaluate porosity and permeability variation caused by the dissolution of CO2 solution into the core samples. The third type of experiment was employed to investigate the effect of time sequence on the dissolution, in which the time ranged from 1 day to 14 days continuously. The experimental results indicate that, under Jimsar reservoir conditions, CO2 solution exhibits a relatively robust dissolution capability, causing significant alterations to the properties of the core samples. Specifically, the CO2 solution effectively dissolves carbonate upon contact. Calcite is the primary target for dissolution, followed by dolomite. In the presence of sufficient CO2, complete dissolution of all carbonates is achievable. On a microscopic scale, dissolution primarily occurs in the calcium-rich areas, leaving other regions unaffected. The typical pore size resulting from CO2 solution-induced dissolution ranges from several to dozens of micrometers. This dissolution process significantly enhances both porosity and permeability. For Jimsar shale core samples, porosity experienced an increase of over 20%, and permeability nearly doubled. Under Jimsar reservoir conditions at 90 °C, CO2 solution can consume all carbonates present in core samples within 8 days. The increase in porosity and permeability is rapid during the initial days and stabilizes around the 6th day. These research findings establish a theoretical foundation for CO2 chemical sequestration.
More
Translated text
Key words
CO,Jimsar,chemical sequestration,microscopic pore structure,mineral
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined