Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO2 and the effect on isopropanol dehydrogenation under gaseous conditions.

Physical chemistry chemical physics : PCCP(2024)

引用 0|浏览0
暂无评分
摘要
Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要