Crystal facet engineering of spinel NiCo2O4 with enhanced activity and water resistance for tuneable catalytic methane oxidation

EES Catalysis(2024)

引用 0|浏览0
暂无评分
摘要
Spinel NiCo2O4 are excellent catalysts for complete methane oxidation. Nevertheless, the spinel structure is thermally unstable and its activity is negatively affected by humidity. Herein, we report crystal facet engineering synthesis of spinel NiCo2O4 hexagonal nanosheets with different exposed facets. Density functional theory (DFT) simulations predict that a more viable reaction mechanism for methane oxidation occurs on 112-NiCo2O4 with {112} exposed facets compared with 111-NiCo2O4 with {111} exposed facets. Detailed material characterization and catalytic oxidation testing verified the DFT results showing that 112-NiCo2O4 has better thermal stability as well as higher catalytic activity towards methane oxidation than 111-NiCo2O4. Conversely, 111-NiCo2O4 has the enhanced water resistance of the two catalysts. DFT calculations suggest that OH groups tend to preferentially adsorb onto metal sites, which (1) reduces the number of active sites available and (2) makes CH4 adsorption and activation a more arduous process. This study offers insights on the behavior of spinel oxide catalysts towards methane combustion in dry and humid conditions, further demonstrating that crystal facet engineering can be a practical strategy to tune the activity and water resistance of metal-oxide catalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要