Numerical Analysis of the Wing Leading Edge Electro-Impulse De-Icing Process Based on Cohesive Zone Model

Fangping Ma, Zhengtao Zhu,Di Wang, Xiaoming Jin

APPLIED SCIENCES-BASEL(2024)

Cited 0|Views5
No score
Abstract
Aircraft icing has historically been a critical cause of airplane crashes. The electro-impulse de-icing system has a wide range of applications in aircraft de-icing due to its lightweight design, low energy consumption, high efficiency, and other advantages. However, there has been little study into accurate wing electric-impulse de-icing simulation methods and the parameters impacting de-icing efficacy. Based on the damage mechanics principle and considering the influence mechanisms of interface debonding and ice fracture on ice shedding, this paper establishes a more accurate numerical model of wing electric-impulse de-icing using the Cohesive Zone Model (CZM). It simulates the process of electric-impulse de-icing at the leading edge of the NACA 0012 wing. The numerical results are compared to the experimental results, revealing that the constructed wing electro-impulse de-icing numerical model is superior. Lastly, the effects of varying ice-skin interface shear adhesion strengths, doubler loading positions, and impulse sequences on de-icing effectiveness were studied. The de-icing rate is a quantitative description of the electro-impulse's de-icing action, defined in the numerical model as the ratio of cohesive element deletions to the total elements at the ice-skin interface. The findings reveal that varying shear adhesion strengths at the ice-skin interface significantly impact the de-icing effect. The de-icing rate steadily falls with increasing shear adhesion strength, from 66% to 56%. When two, four, and seven impulses were applied to doubler two, the de-icing rates were 59%, 71%, and 71%, respectively, significantly increasing the de-icing efficiency compared to when impulses were applied to doubler one. Doubler one and two impulse responses are overlaid differently depending on the impulse sequences, resulting in varying de-icing rates. When the impulse sequence is 20 ms, the superposition results are optimal, and the de-icing rate reaches 100%. These studies can guide the development and implementation of a wing electric-impulse de-icing system.
More
Translated text
Key words
wing,electro-impulse de-icing,cohesive zone model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined