Double-Core Nanothread Formation from α-Furil via Pressure-Induced Planarization Pathway

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The packing and geometry of compressed small molecule precursors largely dictate the kinetically controlled formation processes of carbon nanothread materials. Structural ordering and chemical homogeneity of nanothread products may deteriorate through competing reaction pathways, and molecular phase transitions can disrupt precursor stacking geometries. Here, we report the formation of well-ordered, double-core nanothreads from compressed α-furil via a unique polymorphic transition pathway that serves to optimize molecular geometry for pressure-induced reaction. At ~1.6 GPa, α-furil transforms to the photoactive trans-planar conformation, which was previously theorized but not observed. Crystalline packing of the trans-planar structure provides closely overlapping molecular stacks that result in topochemical-like Diels-Alder cycloaddition reactions between furan rings upon further compression. The controlled reaction pathways on both sides of the molecule produce two linked “cores” of chemically homogenous nanothreads, and successive nucleophilic addition reactions crosslink a large fraction of the diketone bridge between monomers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要