Recycling of polyethylene terephthalate to bismuth-embedded bimetallic MOFs as photocatalysts toward removal of cationic dye in water

Journal of Industrial and Engineering Chemistry(2024)

引用 0|浏览2
暂无评分
摘要
Our study presents a sustainable approach to fabricating efficient photocatalytic metal–organic frameworks (MOFs) by recycling polyethylene terephthalate (PET) waste from bottles. Through chemical depolymerization, recycled terephthalic acids (BDCs) obtained from PET waste were coordinated with copper (Cu) and nickel (Ni) to prepare a bimetallic Ni/Cu-MOF. After exploring various Ni:Cu ratios (1:3, 2:3, and 3:3), we determined that the 2:3 ratio represents the optimal metal combination (degradation efficiency 50–60% under direct sunlight). Subsequently, we integrated bismuth oxyiodide (BiOI) into the Ni/Cu-BDC MOF, yielding Ni/Cu-MOF@BiOI heterostructures. Thorough structural characterization via scanning electron microscopy and X-ray diffraction confirmed the morphology and composition of the prepared materials. Assessing the photocatalytic performance against MB degradation in water under solar irradiation, we systematically analyzed operational parameters such as pH, catalyst dosage, MB concentration, and irradiation time. Ni/Cu-MOF@BiOI heterostructures exhibited exceptional efficiency, degrading 99% of MB under sunlight in four hours. Our research presents a sustainable method for the synthesis of photocatalysts using recycled PET waste, along with optimized operational parameters for enhanced catalytic efficiency. This approach combines green synthesis, material hybridization, and thorough analysis, contributing significantly to sustainable materials for pollutant remediation.
更多
查看译文
关键词
Industrial Dye Removal,PET Waste Recycling,Bismuth-Embedded Photocatalysts,Green Synthesis,Metal-Organic Frameworks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要