Formulation and evaluation of inhaled Sildenafil-loaded PLGA microparticles for treatment of pulmonary arterial hypertension (PAH): A novel high drug loaded formulation and scalable process via hot melt extrusion technology (Part Ⅰ).

International journal of pharmaceutics(2024)

引用 0|浏览3
暂无评分
摘要
In recent years, several techniques were employed to develop a local sustained pulmonary delivery of sildenafil citrate (SC) as an alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). Most of these methods, however, need to be improved due to limitations of scalability, low yield production, low drug loading, and stability issues. In this study, we report the use of hot-melt extrusion (HME) as a scalable process for making Poly (lactic-co-glycolic acid) (PLGA) microparticles with high SC load. The prepared particles were tested in vitro for local drug delivery to the lungs by inhalation. Sodium bicarbonate was included as a porogen in the formulation to make the particles more brittle and to impart favorable aerodynamic properties. Six formulations were prepared with different formulation compositions. Laser diffraction analysis was used to estimate the geometric particle size distribution of the microparticles. In-vitro aerodynamic performance was evaluated by the next-generation cascade impactor (NGI). It was reported in terms of an emitted dose (ED), an emitted fraction (EF%), a respirable fraction (RF%), a fine particle fraction (FPF%), a mass median aerodynamic diameter (MMAD), and geometric standard deviation (GSD). The formulations have also been characterized for surface morphology, entrapment efficiency, drug load, and in-vitro drug release. The results demonstrated that PLGA microparticles have a mean geometric particle size between 6 and 14 µm, entrapment efficiency of 77 to 89 %, and SC load between 17 and 33 % w/w. Fifteen percent of entrapped sildenafil was released over 24 h from the PLGA microparticles, and seventy percent over 7 days. The aerodynamic properties included fine particle fraction ranging between 19 and 33 % and an average mass median aerodynamic diameter of 6-13 µm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要