Can machine learning models provide accurate fertilizer recommendations?

Precision Agriculture(2024)

Cited 0|Views3
No score
Abstract
Accurate modeling of site-specific crop yield response is key to providing farmers with accurate site-specific economically optimal input rates (EOIRs) recommendations. Many studies have demonstrated that machine learning models can accurately predict yield. These models have also been used to analyze the effect of fertilizer application rates on yield and derive EOIRs. But models with accurate yield prediction can still provide highly inaccurate input application recommendations. This study quantified the uncertainty generated when using machine learning methods to model the effect of fertilizer application on site-specific crop yield response. The study uses real on-farm precision experimental data to evaluate the influence of the choice of machine learning algorithms and covariate selection on yield and EOIR prediction. The crop is winter wheat, and the inputs considered are a slow-release basal fertilizer NPK 25–6–4 and a top-dressed fertilizer NPK 17–0–17. Random forest, XGBoost, support vector regression, and artificial neural network algorithms were trained with 255 sets of covariates derived from combining eight different soil properties. Results indicate that both the predicted EOIRs and associated gained profits are highly sensitive to the choice of machine learning algorithm and covariate selection. The coefficients of variation of EOIRs derived from all possible combinations of covariate selection ranged from 13.3 to 31.5
More
Translated text
Key words
Economically optimal input rate,On-farm experimentation,Site-specific management,Variable-rate application,Winter wheat
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined