Application of Infrared Pyrolysis and Chemical Post-Activation in the Conversion of Polyethylene Terephthalate Waste into Porous Carbons for Water Purification

Mikhail Efimov,Andrey Vasilev,Dmitriy Muratov, Alexander Panin, Maria Malozovskaya,Galina Karpacheva

POLYMERS(2024)

引用 0|浏览3
暂无评分
摘要
In this study, we compared the conversion of polyethylene terephthalate (PET) into porous carbons for water purification using pyrolysis and post-activation with KOH. Pyrolysis was conducted at 400-850 degrees C, followed by KOH activation at 850 degrees C for samples pyrolyzed at 400, 650, and 850 degrees C. Both pyrolyzed and post-activated carbons showed high specific surface areas, up to 504.2 and 617.7 m2 g-1, respectively. As the pyrolysis temperature increases, the crystallite size of the graphite phase rises simultaneously with a decrease in specific surface area. This phenomenon significantly influences the final specific surface area values of the activated samples. Despite their relatively high specific surface areas, pyrolyzed PET-derived carbons prove unsuitable as adsorbents for purifying aqueous media from methylene blue dye. A sample pyrolyzed at 650 degrees C, with a surface area of 504.2 m2 g-1, exhibited a maximum adsorption value of only 20.4 mg g-1. We propose that the pyrolyzed samples have a surface coating of amorphous carbon poor in oxygen groups, impeding the diffusion of dye molecules. Conversely, post-activated samples emerge as promising adsorbents, exhibiting a maximum adsorption capacity of up to 127.7 mg g-1. This suggests their potential for efficient dye removal in water purification applications.
更多
查看译文
关键词
polyethylene terephthalate,infrared heating,pyrolysis,activated carbon,adsorbent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要