Supervised Contrastive Learning Enhances Graph Convolutional Networks for Predicting Neurodevelopmental Deficits in Very Preterm Infants using Brain Structural Connectome

Hailong Li,Junqi Wang, Zhiyuan Li,Kim M. Cecil, Mekibib Altaye,Jonathan R. Dillman, Nehal A. Parikh,Lili He

NeuroImage(2024)

引用 0|浏览8
暂无评分
摘要
Very preterm (VPT) infants (born at less than 32 weeks gestational age) are at high risk for various adverse neurodevelopmental deficits. Unfortunately, most of these deficits cannot be accurately diagnosed until the age of 2-5 years old. Given the benefits of early interventions, accurate diagnosis and prediction soon after birth are urgently needed for VPT infants. Previous studies have applied deep learning models to learn the brain structural connectome (SC) to predict neurodevelopmental deficits in the preterm population. However, none of these models are specifically designed for graph-structured data, and thus may potentially miss certain topological information conveyed in the brain SC. In this study, we aim to develop deep learning models to learn the SC acquired at term-equivalent age for early prediction of neurodevelopmental deficits at 2 years corrected age in VPT infants. We directly treated the brain SC as a graph, and applied graph convolutional network (GCN) models to capture complex topological information of the SC. In addition, we applied the supervised contrastive learning (SCL) technique to mitigate the effects of the data scarcity problem, and enable robust training of GCN models. We hypothesize that SCL will enhance GCN models for early prediction of neurodevelopmental deficits in VPT infants using the SC. We used a regional prospective cohort of ∼280 VPT infants who underwent MRI examinations at term-equivalent age from the Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS). These VPT infants completed neurodevelopmental assessment at 2 years corrected age to evaluate cognition, language, and motor skills. Using the SCL technique, the GCN model achieved mean areas under the receiver operating characteristic curve (AUCs) in the range of 0.72∼0.75 for predicting three neurodevelopmental deficits, outperforming several competing models. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks.
更多
查看译文
关键词
deep learning,graph convolutional network,supervised contrastive learning,diffusion tensor imaging,brain structural connectome,early prediction,preterm infants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要