Improving trans-cleavage activity of CRISPR-Cas13a using engineered crRNA with a uridinylate-rich 5′-overhang

Biosensors and Bioelectronics(2024)

Cited 0|Views7
No score
Abstract
The engieering of Cas13a crRNA to enhance its binding affinity with the Cas enzyme or target is a promising method of improving the collateral cleavage efficiency of CRISPR-Cas13a systems, thereby amplifying the sensitivity of nucleic acid detection. An examination of the top-performing engineered crRNA (24 nt 5′7U LbuCas13a crRNA, where the 5′-end was extended using 7-mer uridinylates) and optimized conditions revealed an increased rate of LbuCas13a-mediated collateral cleavage activity that was up to seven-fold higher than that of the original crRNA. Particularly, the 7-mer uridinylates extension to crRNA was determined to be spacer-independent for enhancing the LbuCas13a-mediacted collateral cleavage activity, and also benefited the LwaCas13a system. The improved trans-cleavage activity was explained by the interactions between crRNA and LbuCas13a at the molecular level, i.e. the 5′-overhangs were anchored in the cleft formed between the Helical-1 and HEPN2 domains with the consequence of more stable complex, and experimentally verified. Consequently, the improved CRISPR-Cas13a system detected the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA with a sensitivity of 2.36 fM that was 160-times higher than that of the original system. Using isothermal amplification via reverse transcription–recombinase polymerase amplification (RT-RPA), the system was capable to detect SARS-CoV-2 with attomolar sensitivity and accurately identified the SARS-CoV-2 Omicron variant (20/21 agreement) in clinical samples within 40 min.
More
Translated text
Key words
CRISPR-Cas13a,Engineered crRNA,Trans-Cleavage activity,Nucleic acid detection,SARS-CoV-2
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined