Accretion tori around rotating neutron stars – Paper II: Oscillations and precessions

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The four characteristic oscillation frequencies of accretion flows are, in addition to the Keplerian orbital frequency, often discussed in the context of the time variability of the black hole and neutron star (NS) low-mass X-ray binaries (LMXBs). These are namely the frequencies of the axisymmetric radial and vertical epicyclic oscillations, and the frequencies of non-axisymmetric oscillations corresponding to the periastron (radial) and Lense-Thirring (vertical) precessions. In this context, we investigate the effect of the quadrupole moment of a slowly rotating NS and provide complete formulae for calculating these oscillation and precession frequencies, as well as their convenient approximations. Simple formulae corresponding to the geodesic limit of a slender torus (and test particle motion) and the limit of a marginally overflowing torus (torus exhibiting a critical cusp) are presented, and furthermore, more general approximate formulae are included to allow calculations for arbitrarily thick tori. We provide the Wolfram Mathematica code used for our calculations together with C++ and PYTHON codes for calculations of the frequencies. Our formulae can be used for various calculations describing the astrophysical signatures of the NSs' superdense matter equation of state. For instance, we demonstrate that, even for a given fixed number of free parameters, a model accounting for fluid flow precession better matches the frequencies of twin-peak quasiperiodic oscillations observed in NS LMXBs than a model using geodesic precession.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要