Identifiable Latent Neural Causal Models

arxiv(2024)

引用 0|浏览14
暂无评分
摘要
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data. It is particularly good at predictions under unseen distribution shifts, because these shifts can generally be interpreted as consequences of interventions. Hence leveraging seen distribution shifts becomes a natural strategy to help identifying causal representations, which in turn benefits predictions where distributions are previously unseen. Determining the types (or conditions) of such distribution shifts that do contribute to the identifiability of causal representations is critical. This work establishes a sufficient and necessary condition characterizing the types of distribution shifts for identifiability in the context of latent additive noise models. Furthermore, we present partial identifiability results when only a portion of distribution shifts meets the condition. In addition, we extend our findings to latent post-nonlinear causal models. We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations. Our algorithm, guided by our underlying theory, has demonstrated outstanding performance across a diverse range of synthetic and real-world datasets. The empirical observations align closely with the theoretical findings, affirming the robustness and effectiveness of our approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要