谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Ultrafast Electron and Hole Transfer and Efficient Charge Separation in a Sb2Se3/CdS Thin Film p-n Heterojunction.

The journal of physical chemistry letters(2024)

引用 0|浏览1
暂无评分
摘要
Harvesting solar energy for different applications requires the continuous development of new semiconducting materials to exploit a broad part of the solar spectrum. In this direction, antimony selenide (Sb2Se3) has attracted a tremendous amount of attention over the past few years as a light-harvesting material for photovoltaic device applications owing to its phase stability, high absorption coefficient, earth abundance, and low toxicity. Here, we have fabricated a high-quality heterojunction of a p-type Sb2Se3 film and an n-type CdS film using the thermal evaporation technique. The photocurrent of the heterosystem was significantly higher than that of the pristine materials. This optoelectronic response was investigated using femtosecond transient absorption (TA) spectroscopy. TA study reveals the existence of an instantaneous electron transfer from Sb2Se3 to CdS, accompanied by a substantial charge separation at the heterojunction. Our study deals with the investigation of a well-designed p-n device, paving the way for the fabrication of highly efficient photovoltaic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要