Intramolecular Energy Transfer Competing with Light-Driven Intermolecular Proton Transfer in an Iron(II)-NHC Complex? A Query into the Role of Photobasic Ligands and MLCT States

Shruthi S. Nair,Oliver A. Bysewski, Niklas Klosterhalfen,Maria Sittig,Andreas Winter,Ulrich S. Schubert, Benjamin Dietzek-Ivanscic

ACS OMEGA(2024)

引用 0|浏览0
暂无评分
摘要
Inorganic photoacids and photobases comprising of photoactive transition metal complexes (TMCs) offer the ability to modulate proton transfer reactions through light irradiation, while utilizing the excellent optical properties of the latter. This provides a powerful tool for precise control over chemical reactions and processes, with implications for both fundamental science and practical applications. In this contribution, we present a novel molecular architecture amending an Fe-NHC complex with a pendant quinoline, as a prototypical photobase, as a representative earth-abundant TMC based inorganic photobase. We characterize the excited-state properties and proton-transfer dynamics using steady-state absorption and emission spectroscopy as well as pump wavelength dependent transient absorption spectroscopy in various protic solvents. The kinetics and thermodynamics of proton transfer in the quinoline moiety are influenced by both the presence of the metal center and the choice of the solvent. Furthermore, we see indications of intramolecular energy transfer from the quinoline to the MLCT state as a limiting factor for panchromatic photobasicity of the complex.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要