A parallel line probe for spatially selective electrochemical NMR spectroscopy

Journal of Magnetic Resonance(2024)

引用 0|浏览0
暂无评分
摘要
In situ NMR is a valuable tool for studying electrochemical devices, including redox flow batteries and electrocatalytic reactors, capable of detecting reaction intermediates, metastable states, time evolution of processes or monitoring stability as a function of electrochemical conditions. Here we report a parallel line detector for spatially selective in situ electrochemical NMR spectroscopy. The detector consists of 17 copper wires and is doubly tuned to 1H/19F and X nuclei ranging from 63Cu (106.1 MHz) to 7Li (155.5 MHz). The flat geometry of the parallel line detector allows its insertion into a high electrode surface-to-volume electrochemical flow reactor, enabling a detector-in-a-reactor design. This integrated device is named “eReactor NMR probe”. Combined with B1-selective pulse sequences, selective detection of the nuclei at the electrode-electrolyte interface, that is within a distance of 800 μm from the electrode surface, has been achieved. The selective detection of 7Li and 19F nuclei is demonstrated using two electrolytes, LiCl and LiBF4 solutions, respectively. A good B1 homogeneity with an 810° to 90° pulse intensity ratio of 68–72 % was achieved. Using electrochemical plating of lithium metal as a model reaction, we further demonstrated the operando functionality of the probe. The new eReactor NMR probe offers a general method for studying flow electrochemistry, and we envision applications in a wide range of environmentally relevant energy systems, for example, Li metal batteries, electrochemical ammonia synthesis, carbon dioxide capture and reduction, redox flow batteries, fuel cells, water desalination, lignin oxidation etc.
更多
查看译文
关键词
NMR detector,NMR coil,Parallel line detector,In situ NMR,EC-NMR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要