Cosine convolutional neural network and its application for seizure detection

Neural Networks(2024)

引用 0|浏览5
暂无评分
摘要
Traditional convolutional neural networks (CNNs) often suffer from high memory consumption and redundancy in their kernel representations, leading to overfitting problems and limiting their application in real-time, low-power scenarios such as seizure detection systems. In this work, a novel cosine convolutional neural network (CosCNN), which replaces traditional kernels with the robust cosine kernel modulated by only two learnable factors, is presented, and its effectiveness is validated on the tasks of seizure detection. Meanwhile, based on the cosine lookup table and KL-divergence, an effective post-training quantization algorithm is proposed for CosCNN hardware implementation. With quantization, CosCNN can achieve a nearly 75% reduction in the memory cost with almost no accuracy loss. Moreover, we design a configurable cosine convolution accelerator on Field Programmable Gate Array (FPGA) and deploy the quantized CosCNN on Zedboard, proving the proposed seizure detection system can operate in real-time and low-power scenarios. Extensive experiments and comparisons were conducted using two publicly available epileptic EEG databases, the Bonn database and the CHB-MIT database. The results highlight the performance superiority of the CosCNN over traditional CNNs as well as other seizure detection methods.
更多
查看译文
关键词
Cosine convolutional neural network (CosCNN),cosine kernel,network quantization,seizure detection,Field programmable gate array (FPGA),Electroencephalogram (EEG)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要