Modelling approaches for surface densification process of sintered gear teeth

The International Journal of Advanced Manufacturing Technology(2024)

引用 0|浏览2
暂无评分
摘要
Sintered gears manufactured through powder metallurgy technology contain residual porosity that can make them inadequate for high power supply. Crack propagation is significantly enhanced by both residual porosity and cyclical stresses involving the teeth. The use of densification processes can highly improve their performances, permitting the reduction of the residual porosity. Among the densification processes, the rolling assumes a key-role. The process permits the densification of the tooth flanks, the most stressed parts of the wheel. However, the performances of the rolled wheel depend on several process parameters, whose setup phase requires several efforts and many experiments. Finite element (FE) model can be a helpful tool, allowing a faster estimation of the process parameters, reducing waste and costs linked to the experimental tests. In this sense, FE modelling techniques discussed in literature only cover the simulation of spur gears densification process, since they consist of in-plane 2D finite elements. In this paper, different numerical modelling techniques, based on 2D finite elements, are proposed to simulate the densification process of spur gears and used to perform a tendency analysis to explore the effects of wheelbase reduction between the forming rollers on the material densification. Material densification appeared higher for reduced wheelbases, but an increasing cavity was observed at the tooth root as the wheelbases decreases. Moreover, a FE model based on 3D finite elements is proposed to reproduce numerically the rolling process of a helical gear. The accuracy of the 3D FE model was measured against the results provided by some experimental tests, herein discussed too. A good agreement between numerical and experimental results was observed.
更多
查看译文
关键词
Powder metallurgy,Rolling process,Sintered gear,Gear densification,Finite element analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要