谷歌浏览器插件
订阅小程序
在清言上使用

Recent advances in MXene-based composite materials with conducting polymers for supercapacitors

Journal of Energy Storage(2024)

引用 0|浏览10
暂无评分
摘要
The fusion of conducting polymers with a two-dimensional (2D) structured MXene is regarded as an innovative solution in the realm of electrical energy storage, offering the potential to address the global energy supply challenge. These materials are an excellent candidate for supercapacitors (SCs). Various materials with conductivity can be utilized as effective electrodes in the context of SC applications. However, among these options, MXene stands out as a novel category of 2D materials with numerous advantageous attributes tailored for SC applications. However, the accumulation of MXene plates during synthesis reduces their capacity and performance. While techniques like sonication and the incorporation of metal ions as intercalating agents have gained popularity, employing conducting polymers such as polypyrrole (PPy), polyaniline (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT) emerges as a suitable resolution. The objective of this paper is to explore how different conducting polymers like PANI, PPy, and PEDOT influence the structure and characteristics of MXene. The study involves an examination of alterations in capacitance, electrical conductivity, and current density within supercapacitors utilizing MXene and these conducting polymers. This polymer significantly influences plate dispersion and MXene stability, offering a potential solution to enhance the efficiency of MXene in addressing the efficiency challenge. This article aims to investigate the effect of combining diverse conducting polymers on the SCs properties of the MXene and provide a vision for the future.
更多
查看译文
关键词
MXene,Conducting polymers,Polyaniline,Polypyrrole,Poly(3,4-ethylenedioxythiophene),Supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要