谷歌浏览器插件
订阅小程序
在清言上使用

Optically Tunable Electrical Oscillations in Oxide-Based Memristors for Neuromorphic Computing

ADVANCED MATERIALS(2024)

引用 0|浏览23
暂无评分
摘要
The application of hardware-based neural networks can be enhanced by integrating sensory neurons and synapses that enable direct input from external stimuli. This work reports direct optical control of an oscillatory neuron based on volatile threshold switching in V3O5. The devices exhibit electroforming-free operation with switching parameters that can be tuned by optical illumination. Using temperature-dependent electrical measurements, conductive atomic force microscopy (C-AFM), in situ thermal imaging, and lumped element modelling, it is shown that the changes in switching parameters, including threshold and hold voltages, arise from overall conductivity increase of the oxide film due to the contribution of both photoconductive and bolometric characteristics of V3O5, which eventually affects the oscillation dynamics. Furthermore, V3O5 is identified as a new bolometric material with a temperature coefficient of resistance (TCR) as high as -4.6% K-1 at 423 K. The utility of these devices is illustrated by demonstrating in-sensor reservoir computing with reduced computational effort and an optical encoding layer for spiking neural network (SNN), respectively, using a simulated array of devices.
更多
查看译文
关键词
bolometric material,negative differential resistance,neuromorphic computing,oscillation neuron,photomemristor,reservoir computing,threshold switching,V3O5,vanadium oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要