Copper Stimulation of Tetrahydrocannabinol and Cannabidiol Production in Hemp (Cannabis sativa L.) Is Copper-Type, Dose, and Cultivar Dependent

Meghan S. Cahill, Terri Arsenault, Trung Huu Bui,Nubia Zuverza-Mena,Anuja Bharadwaj, Kitty Prapayotin-Riveros,Jason C. White,Christian O. Dimkpa

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Copper (Cu) is an element widely used as a pesticide for the control of plant diseases. Cu is also known to influence a range of plant secondary metabolisms. However, it is not known whether Cu influences the levels of the major metabolites in hemp (Cannabis sativa L.), tetrahydrocannabinol (THC) and cannabidiol (CBD). This study investigated the impact of Cu on the levels of these cannabinoids in two hemp cultivars, Wife and Merlot, under field conditions, as a function of harvest time (August-September), Cu type (nano, bulk, or ionic), and dose (50, 100, and 500 ppm). In Wife, Cu caused significant temporal increases in THC and CBD production during plant growth, reaching increases of 33% and 31% for THC and 51% and 16.5% for CBD by harvests 3 and 4, respectively. CuO nanoparticles at 50 and 100 ppm significantly increased THC and CBD levels, compared to the control, respectively, by 18% and 27% for THC and 19.9% and 33.6% for CBD. These nanospecific increases coincided with significantly more Cu in the inflorescences (buds) than in the control and bulk CuO treatments. Contrarily, no temporal induction of the cannabinoids by Cu was noticed in Merlot, suggesting a cultivar-specific response to Cu. However, overall, in Merlot, Cu ions, but not particulate Cu, induced THC and CBD levels by 27% and 36%, respectively, compared to the control. Collectively, our findings provide information with contrasting implications in the production of these cannabinoids, where, dependent on the cultivar, metabolite levels may rise above the 0.3% regulatory threshold for THC but to a more profitable level for CBD. Further investigations with a wider range of hemp cultivars, CuO nanoparticle (NP) doses, and harvest times would clarify the significance and broader implications of the findings.
更多
查看译文
关键词
Cannabis sativa,CBD,copper,hemp,nanoparticles,THC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要