E-GVD: Efficient Software Vulnerability Detection Techniques Based on Graph Neural Network

Haiye Wang,Zhiguo Qu,Le Sun

ICST Transactions on Scalable Information Systems(2024)

引用 0|浏览1
暂无评分
摘要
INTRODUCTION: Vulnerability detection is crucial for preventing severe security incidents like hacker attacks, data breaches, and network paralysis. Traditional methods, however, face challenges such as low efficiency and insufficient detail in identifying code vulnerabilities. OBJECTIVES: This paper introduces E-GVD, an advanced method for source code vulnerability detection, aiming to address the limitations of existing methods. The objective is to enhance the accuracy of function-level vulnerability detection and provide detailed, understandable insights into the vulnerabilities. METHODS: E-GVD combines Graph Neural Networks (GNNs), which are adept at handling graph-structured data, with residual connections and advanced Programming Language (PL) pre-trained models. RESULTS: Experiments conducted on the real-world vulnerability dataset CodeXGLUE show that E-GVD significantly outperforms existing baseline methods in detecting vulnerabilities. It achieves a maximum accuracy gain of 4.98%, indicating its effectiveness over traditional methods. CONCLUSION: E-GVD not only improves the accuracy of vulnerability detection but also contributes by providing fine-grained explanations. These explanations are made possible through an interpretable Machine Learning (ML) model, which aids developers in quickly and efficiently repairing vulnerabilities, thereby enhancing overall software security.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要