Assessing the Spurious Impacts of Ice-Constraining Methods on the Climate Response to Sea-Ice Loss using an Idealised Aquaplanet GCM

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Coupled climate model simulations designed to isolate the effects of Arctic sea-ice loss often apply artificial heating, either directly to the ice or through modification of the surface albedo, to constrain sea-ice in the absence of other forcings. Recent work has shown that this approach may lead to an overestimation of the climate response to sea-ice loss. In this study, we assess the spurious impacts of ice-constraining methods on the climate of an idealised aquaplanet general circulation model (GCM) with thermodynamic sea-ice. The true effect of sea-ice loss in this model is isolated by inducing ice loss through reduction of the freezing point of water, which does not require additional energy input. We compare results from freezing point modification experiments with experiments where sea-ice loss is induced using traditional ice-constraining methods, and confirm the result of previous work that traditional methods induce spurious additional warming. Furthermore, additional warming leads to an overestimation of the circulation response to sea-ice loss, which involves a weakening of the zonal wind and storm track activity in midlatitudes. Our results suggest that coupled model simulations with constrained sea-ice should be treated with caution, especially in boreal summer, where the true effect of sea-ice loss is weakest but we find the largest spurious response. Given that our results may be sensitive to the simplicity of the model we use, we suggest that devising methods to quantify the spurious effects of ice-constraining methods in more sophisticated models should be an urgent priority for future work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要