Electrochemical synthesis in company with hydrogen production via renewable energy: Opportunities and challenges

Chinese Journal of Catalysis(2024)

引用 0|浏览19
暂无评分
摘要
Organic electromechanical synthesis is an eco-friendly and efficient method for material synthesis, effectively addressing the high energy consumption and pollution problems in the traditional chemical industry. By combining hydrogen production from water electrolysis with organic electromechanical synthesis, the reactive oxygen/hydrogen from water hydrolysis can be utilized to oxidize/reduce organic compounds, reducing energy consumption and producing valuable organic products. However, this strategy still faces challenges when implemented in the industry. This paper addresses major technical challenges in the field, providing new insights for future advancements. Firstly, when selecting anode reactions for hydrogen production, it is important to consider the value and market demand of the oxidation product to match the production scale. Secondly, the development of efficient electrocatalysts and electrodes is required to enhance the oxidation kinetics and mass transfer of organics at the current density levels of industrial hydrogen production (500–2000 mA cm−2). Thirdly, it is essential to improve the selectivity and Faraday efficiency of the anode target product to lower the cost of subsequent separation and purification. Fourthly, existing anion and oxygen ion exchange membranes lack corrosion resistance to organic matter, and new separator materials with high ion conductivity and stability are crucial for the electrolytic coupling system. Finally, when combining organic oxidation and water electrolysis, the complexity of product separation increases, and it is recommended to integrate distillation, extraction, membrane separation, and electrochemical reactions to improve process efficiency.
更多
查看译文
关键词
Electrochemical synthesis,Hydrogen evolution,Reaction match,Product selectivity,Membrane stability,Process intensification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要