Sensitive SERS assay for L-cysteine based on functionalized silver nanoparticles

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2024)

引用 0|浏览10
暂无评分
摘要
L-cysteine, an indispensable amino acid present in natural proteins, plays pivotal roles in various biological processes. Consequently, precise and selective monitoring of its concentrations is imperative. Herein, we propose a Surface-enhanced Raman Scattering (SERS) sensor for detecting L-cysteine based on the anti-aggregation of 4-mercaptobenzoic acid (4-MBA) and histidine (His) functionalized silver nanoparticles (Ag NPs). The presence of Hg2+ ions can induce the aggregation of Ag NPs@His@4-MBA due to the unique nanostructures of Ag NPs@His@4-MBA, resulting in a robust SERS intensity of 4-MBA. However, in the presence of L-cysteine, the stronger affinity between L-cysteine and Hg2+ reduces the concentration of free Hg2+, causing the dispersion of the aggregated functionalized Ag NPs and the reduction of the SERS signal intensity of 4-MBA. The developed SERS platform demonstrates excellent performance with a low detection limit of 5 nM (S/N = 3) and linear detection capabilities within the range of 0.01–100 μM for L-cysteine. Additionally, the method was successfully employed for the determination of L-cysteine in spiked serum samples, yielding recoveries ranging from 95.0 % to 108.1 % with relative standard deviations of less than 3.3 %. This study not only presents a novel approach for fabricating highly sensitive and specific SERS biosensors for biomolecule detection but also offers a significant strategy for the development and construction of SERS substrates using anti-aggregation design.
更多
查看译文
关键词
L-cysteine,Surface-enhanced Raman scattering,Anti-aggregation 4-mercaptobenzoic acid,Silver nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要