Altered Neopterin and IDO in Kynurenine Metabolism based on LC-MS/MS Metabolomics Study: Novel Therapeutic Checkpoints for Type 2 Diabetes Mellitus

Clinica Chimica Acta(2024)

引用 0|浏览8
暂无评分
摘要
BACKGROUND:This study assessed the alternations of kynurenine pathway (KP) and neopterin in type 2 diabetes mellitus (T2DM) and explored possible differential metabolites.METHODS:A fresh residual sera panel was collected from 80 healthy control (HC) individuals and 72 T2DM patients. Metabolites/ratios of interest including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), neopterin (NEO), KA/KYN ratio and KYN/TRP ratio were determined using a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics approach, and the difference between groups was assessed. Supervised orthogonal partial least squares-discriminant analysis and differential metabolite screening with fold change (FC) were performed to identify distinct biomarkers. The diagnostic performance of KP metabolites in T2DM was evaluated.RESULTS:Significant decreases of TRP, 5HT, KA, XA, and KA/KYN and increases of KYN/TRP and NEO in T2DM compared to HC group were observed (P < 0.05). The KP metabolites panel significantly changed between T2DM and HC groups (Q2: 0.925, P < 0.005). 5HT (FC: 0.63, P < 0.01) and NEO (FC: 3.27, P < 0.01) were proven to be distinct differential metabolites. A combined testing of fasting plasma glucose and KYN/TRP showed good value in the prediction of T2DM (AUC: 0.904, 95% CI 0.843-0.947).CONCLUSIONS:The targeted LC-MS/MS metabolomics study is a powerful tool for evaluating the status of T2DM. This study facilitated the application of KP metabolomics into future clinical practice. 5HT and NEO are promising biomarkers in T2DM. KYN/TRP was highly associated with the development of T2DM and may serve as a potential treatment target.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要