Threats, Attacks, and Defenses in Machine Unlearning: A Survey

Ziyao Liu, Huanyi Ye, Chen Chen,Kwok-Yan Lam

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
Recently, Machine Unlearning (MU) has gained considerable attention for its potential to improve AI safety by removing the influence of specific data from trained Machine Learning (ML) models. This process, known as knowledge removal, addresses concerns about data such as sensitivity, copyright restrictions, obsolescence, or low quality. This capability is also crucial for ensuring compliance with privacy regulations such as the Right To Be Forgotten (RTBF). Therefore, strategic knowledge removal mitigates the risk of harmful outcomes, safeguarding against biases, misinformation, and unauthorized data exploitation, thereby enhancing the ethical use and reliability of AI systems. Efforts have been made to design efficient unlearning approaches, with MU services being examined for integration with existing machine learning as a service (MLaaS), allowing users to submit requests to erase data. However, recent research highlights vulnerabilities in machine unlearning systems, such as information leakage and malicious unlearning requests, that can lead to significant security and privacy concerns. Moreover, extensive research indicates that unlearning methods and prevalent attacks fulfill diverse roles within MU systems. For instance, unlearning can act as a mechanism to recover models from backdoor attacks, while backdoor attacks themselves can serve as an evaluation metric for unlearning effectiveness. This underscores the intricate relationship and complex interplay between these elements in maintaining system functionality and safety. Therefore, this survey seeks to bridge the gap between the extensive number of studies on threats, attacks, and defenses in machine unlearning and the absence of a comprehensive review that categorizes their taxonomy, methods, and solutions, thus offering valuable insights for future research directions and practical implementations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要