Metabolic profiling of aortic stenosis and hypertrophic cardiomyopathy identifies mechanistic contrasts in substrate utilization

FASEB JOURNAL(2024)

引用 0|浏览9
暂无评分
摘要
Aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing). The identified changes in the metabolome were further validated by metabolomic and orthogonal transcriptomic analysis, in separately recruited patient cohorts. We identified a highly discriminant metabolomic signature in severe AS in all samples, regardless of sampling site, characterized by striking accumulation of long-chain acylcarnitines, intermediates of fatty acid transport across the inner mitochondrial membrane, and validated this in a separate cohort. Mechanistically, we identify a downregulation in the PPAR-alpha transcriptional network, including expression of genes regulating fatty acid oxidation (FAO). In silico modeling of beta-oxidation demonstrated that flux could be inhibited by both the accumulation of fatty acids as a substrate for mitochondria and the accumulation of medium-chain carnitines which induce competitive inhibition of the acyl-CoA dehydrogenases. We present a comprehensive analysis of changes in the metabolic pathways (transcriptome to metabolome) in severe AS, and its comparison to HCM. Our results demonstrate a progressive impairment of beta-oxidation from HCM to AS, particularly for FAO of long-chain fatty acids, and that the PPAR-alpha signaling network may be a specific metabolic therapeutic target in AS. We apply comprehensive metabolomics to blood samples collected from the heart (coronary sinus and aortic root) and peripherally (femoral vein) to demonstrate that aortic stenosis, and to a lesser degree hypertrophic cardiomyopathy, is associated with impaired beta-oxidation. Figure created in Biorender.image
更多
查看译文
关键词
cardiac gradient,cardiac metabolism,ischemic heart disease,metabolomics,precision medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要