Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1

Chee San Tong,Maohan Su,He Sun, Xiang Le Chua,Ding Xiong, Su Guo, Ravin Raj, Nicole Wen Pei Ong, Ann Gie Lee,Yansong Miao,Min Wu

FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1's interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics.
更多
查看译文
关键词
actin waves,microtubule,formins,FHDC1,cell cortex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要