AMPK/MTOR/TP53 Signaling Pathway Regulation by Calcitonin Gene-Related Peptide Reduces Oxygen-Induced Lung Damage in Neonatal Rats through Autophagy Promotion

Inflammation(2024)

引用 0|浏览0
暂无评分
摘要
Our previous studies indicated that calcitonin gene-related peptide (CGRP) alleviates hyperoxia-induced lung injury and suggested the possible involvement of autophagy in this process. Herein, we aimed to further explore the potential involvement of tumor protein p53 (TP53) and autophagy in the mode of action of CGRP against hyperoxia-induced lung injury in vitro and in vivo. The study conducted tests on type II alveolar epithelial cells (AECII) and rats that were subjected to hyperoxia treatment or combined treatment of hyperoxia with CGRP, CGRP inhibitor, rapamycin (an autophagy agonist), 3-methyladenine (3-MA, an autophagy inhibitor), TP53 silencing/inhibitor (pifithrin-α), or expression vector/activator (PRIMA-1 (2,2-bis(hydroxymethyl)-3-quinuclidinone)) and their corresponding controls. We found that oxidative stress, apoptosis, and autophagy were all increased by hyperoxia treatment in vitro. However, treating AECII cells with CGRP reversed hyperoxia-induced oxidative stress and apoptosis but further promoted autophagy. In addition, the combined treatment with rapamycin or TP53 silencing with CGRP promoted the effect of CGRP, while contrary results were obtained with combined therapy with 3-MA or TP53 overexpression. In vivo, the number of hyperoxia-induced autophagosomes was promoted in the lung tissue of neonatal rats. Furthermore, hyperoxia increased the expression levels of AMP-activated protein kinase (AMPK) alpha 1 (also known as protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1)) but inhibited TP53 and mechanistic target of rapamycin (MTOR); these expression trends were regulated by CGRP treatment. In conclusion, we showed that CGRP can attenuate hyperoxia-induced lung injury in neonatal rats by enhancing autophagy and regulating the TP53/AMPK/MTOR crosstalk axis.
更多
查看译文
关键词
autophagy,bronchopulmonary dysplasia,calcitonin gene-related peptide,TP53/AMPK/MTOR signaling,type II alveolar epithelial cells.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要