KINASE-INDUCIBLE DOMAIN INTERACTING 8 regulates helical pod morphology in Medicago truncatula

Qianxia Yu,Huan Du, Yuanyuan Huang, Xiao Lei,Xueting Wu, Jiayu Jiang,Wei Huang,Liangfa Ge

PLANT PHYSIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
Leguminosae exhibits a wide diversity of legume forms with varying degrees of spiral morphologies, serving as an ideal clade for studying the growth and development of spiral organs. While soybean (Glycine max) develops straight pods, the pod of the model legume Medicago truncatula is a helix structure. Despite the fascinating structures and intensive description of the pods in legumes, little is known regarding the genetic mechanism underlying the highly varied spirality of the legume pods. In this study, we found that KINASE-INDUCIBLE DOMAIN INTERACTING 8 (MtKIX8) plays a key role in regulating the pod structure and spirality in M. truncatula. Unlike the coiled and barrel-shaped helix pods of the wild type, the pods of the mtkix8 mutant are loose and deformed and lose the topologic structure as observed in the wild-type pods. In the pods of the mtkix8 mutant, the cells proliferate more actively and overly expand, particularly in the ventral suture, resulting in uncoordinated growth along the dorsal and ventral sutures of pods. The core cell cycle genes CYCLIN D3s are upregulated in the mtkix8 pods, leading to the prolonged growth of the ventral suture region of the pods. Our study revealed the key role of MtKIX8 in regulating seed pod development in M. truncatula and demonstrates a genetic regulatory model underlying the establishment of the helical pod in legumes. KINASE-INDUCIBLE DOMAIN INTERACTING 8 coordinates growth along dorsal-ventral sutures, which leads to the helical shape of Medicago truncatula pods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要