Adjacent‐Confined Pyrolysis for High‐Density Phase Boundaries in Mo2C Nanosheets to Boost Oxygen Evolution

Wenhua Cong,Weikang Dong, Yuanyuan Yan,Xun Cao,Yike Xu, Zhenyu Liu, Jijian Liu, Jin Yang,Xuguang Liu, Yang Yang, Longyi Fu,Meiling Wang,Tianyuan Zhang,Jiadong Zhou

Advanced Functional Materials(2024)

引用 0|浏览5
暂无评分
摘要
AbstractHeterostructure or doping engineering on Mo2C by coupling with transition metal nanoparticles/atoms can optimize catalytic activities for oxygen evolution reaction (OER). However, the intrinsic catalytic activity of Mo2C is not fully stimulated at the atomic level, which is challenging. Herein, an adjacent‐confined pyrolysis strategy to manipulate the intrinsic electronic structure of Mo2C directly is reported. During the nucleation and growth of Mo2C, the replacement of Mo atoms by adjacent Ni atoms induces the generation of high‐density phase boundaries (PBs) with alternating face‐centered cubic (fcc) and hexagonal close‐packed (hcp) hetero‐phase. The lattice deformity in PBs affords an ultrahigh density of active sites, endowing Mo2C nanosheets with excellent OER activity and superior stability. Theoretical calculations reveal that introduced Ni atoms activate the adjacent Mo sites and optimize the thermodynamic reaction energetics for enhanced OER activity. The work offers a general adjacent‐confined pyrolysis strategy to achieve PBs‐controlling in Mo2C nanosheets for catalytic application and beyond.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要