Chrome Extension
WeChat Mini Program
Use on ChatGLM

Large Language Model-informed ECG Dual Attention Network for Heart Failure Risk Prediction

CoRR(2024)

Cited 0|Views15
No score
Abstract
Heart failure (HF) poses a significant public health challenge due to its rising global mortality rate. Addressing this issue through early diagnosis and prevention could significantly reduce the disease's impact. This work introduces a methodology for HF risk prediction using clinically acquired 12-lead electrocardiograms (ECGs). We present a novel, lightweight dual-attention ECG network designed to capture complex ECG features essential for early HF prediction, despite the notable imbalance between low and high-risk groups. The network features a cross-lead attention module and twelve lead-specific temporal attention modules to capture cross-lead interactions and local temporal dynamics within each lead. To prevent model overfitting from limited training data, we leverage a large language model (LLM) with a public ECG-Report dataset for pretraining on an ECG-report alignment task. The network is then fine-tuned for HF risk prediction using two specific cohorts from the UK Biobank study, focusing on patients with hypertension (UKB-HYP) and those who have had a myocardial infarction (UKB-MI). Our findings show that LLM-informed pretraining significantly improves the network's HF risk prediction capability in these cohorts. Moreover, the dual-attention mechanism enhances interpretability and predictive performance, ensuring a transparent and reliable prediction process. The method outperforms existing models, achieving average C-index scores of 0.6349 and 0.5805 on the UKB-HYP and UKB-MI test sets, respectively. This performance demonstrates our approach's effectiveness in managing complex clinical ECG data and its potential to improve HF risk assessment across various populations.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined