Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine.

Xin Xu, Yi-Kang Zhu, Chuan-Ming Dai,Jiaping Xu,Jiwen Jian

Physical chemistry chemical physics : PCCP(2024)

Cited 0|Views5
No score
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined