谷歌浏览器插件
订阅小程序
在清言上使用

Investigations on Blast Performance of Steel-Concrete Composite Structures

Key Engineering Materials(2024)

引用 0|浏览3
暂无评分
摘要
Blast performance of concrete and ultra-high performance fiber concrete (UHPFRC) has been subject to numerous publications in the past decades. The enhanced force-deflection diagram of fiber concrete and ultra-high performance fiber concrete provide massive increase on the protective function of these materials compared to regular concrete. Nevertheless, concrete spalling cannot be fully avoided even when using UHPFRC. The next step for harmful debris ejection prevention can be supplementing the concrete specimens with steel slabs. The steel slab will not just hold the debris, but can, if properly bonded with concrete, contribute to the load bearing capacity as steel-concrete composite structure. This paper presents an overview of recent experiments on blast resistance of steel-concrete composite slabs. In total 6 pairs of specimens (dimension 1.000/1.000/150mm) were prepared, 6 specimens using regular concrete and 6 specimens using UHPFRC. One pair of specimens was reinforced by a steel mesh at 30mm cover from the soffit, one pair was supplemented by a steel plate bonded with 4 studs in the corners, at the complementary specimen pair, the concrete was also covered with a steel plate at the side subjected to blast loading, in the case of the further pair of specimens, the steel plates were connected by steel bars arranged in a mesh 150/150mm. The final 2 pairs represented steel-concrete composite slabs, in the first case, the shear studs were supplemented with a steel mesh (according to provisions of the European standard for steel-concrete composite structures), in the last case, the shear studs were replaced by a shear plate. All specimens were subjected to the same contact blast loading. The paper presents the experimental arrangement, the achieved results and a brief discussion on the structural behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要