Thermal control of long delay lines in a high-resolution astrophotonic spectrograph

Gregory P. Sercel,Pradip R. Gatkine,Nemanja Jovanovic, Jeffrey B. Jewell, Luis Pereira da Costa,J. Kent Wallace,Dimitri P. Mawet

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
High-resolution astronomical spectroscopy carried out with a photonic Fourier transform spectrograph (FTS) requires long asymmetrical optical delay lines that can be dynamically tuned. For example, to achieve a spectral resolution of R = 30,000, a delay line as long as 1.5 cm would be required. Such delays are inherently prone to phase errors caused by temperature fluctuations. This is due to the relatively large thermo-optic coefficient and long lengths of the waveguides, in this case composed of SiN, resulting in thermally dependent changes to the optical path length. To minimize phase error to the order of 0.05 radians, thermal stability of the order of 0.05 C is necessary. A thermal control system capable of stability such as this would require a fast thermal response and minimal overshoot/undershoot. With a PID temperature control loop driven by a Peltier cooler and thermistor, we minimized interference fringe phase error to +/- 0.025 radians and achieved temperature stability on the order of 0.05 C. We present a practical system for precision temperature control of a foundry-fabricated and packaged FTS device on a SiN platform with delay lines ranging from 0.5 to 1.5 cm in length using inexpensive off-the-shelf components, including design details, control loop optimization, and considerations for thermal control of integrated photonics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要