Regime Shifts in Lake Oxygen and Temperature in the Rapidly Warming High Arctic

GEOPHYSICAL RESEARCH LETTERS(2024)

Cited 0|Views5
No score
Abstract
Global warming is destabilizing the cryosphere, with consequences for glaciers, permafrost, sea ice and lake ice. Polar lakes have short ice-free seasons, and small changes in ice cover duration have the potential to provoke alterations to ecosystem structure. However, these lakes are understudied, and the consequences for mixing regimes, thermal structures and biogeochemical processes remain unclear. We measured three annual cycles of dissolved oxygen, temperature and specific conductivity in a lake at similar to 83 degrees N to investigate limnological processes and their interannual variability. There were sharp interannual contrasts in lake dynamics, with state shifts in mixing, stratification and oxygen regimes due to air temperature variability and meteorological events. We also observed unusual thermal profiles that were associated with solute gradients. These striking differences underscore the sensitivity of high Arctic lakes to interannual variations in meteorological forcing, and their susceptibility to regime shifts in response to ongoing global change.
More
Translated text
Key words
climate change,oxygen dynamics,stratification,high Arctic lakes,annual cycles,lake ice cover
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined