Candidate Gene Identification and Transcriptome Analysis of Tomato male sterile-30 and Functional Marker Development for ms-30 and Its Alleles, ms-33, 7B-1, and stamenless-2

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2024)

引用 0|浏览4
暂无评分
摘要
Male sterility is a valuable trait for hybrid seed production in tomato (Solanum lycopersicum). The mutants male sterile-30 (ms-30) and ms-33 of tomato exhibit twisted stamens, exposed stigmas, and complete male sterility, thus holding potential for application in hybrid seed production. In this study, the ms-30 and ms-33 loci were fine-mapped to 53.3 kb and 111.2 kb intervals, respectively. Tomato PISTILLATA (TPI, syn. SlGLO2), a B-class MADS-box transcription factor gene, was identified as the most likely candidate gene for both loci. TPI is also the candidate gene of tomato male sterile mutant 7B-1 and sl-2. Allelism tests revealed that ms-30, ms-33, 7B-1, and sl-2 were allelic. Sequencing analysis showed sequence alterations in the TPI gene in all these mutants, with ms-30 exhibiting a transversion (G to T) that resulted in a missense mutation (S to I); ms-33 showing a transition (A to T) that led to alternative splicing, resulting in a loss of 46 amino acids in protein; and 7B-1 and sl-2 mutants showing the insertion of an approximately 4.8 kb retrotransposon. On the basis of these sequence alterations, a Kompetitive Allele Specific PCR marker, a sequencing marker, and an Insertion/Deletion marker were developed. Phenotypic analysis of the TPI gene-edited mutants and allelism tests indicated that the gene TPI is responsible for ms-30 and its alleles. Transcriptome analysis of ms-30 and quantitative RT-PCR revealed some differentially expressed genes associated with stamen and carpel development. These findings will aid in the marker-assisted selection for ms-30 and its alleles in tomato breeding and support the functional analysis of the TPI gene.
更多
查看译文
关键词
tomato,male sterility,Tomato PISTILLATA,functional molecular marker,gene editing,transcriptome analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要