Non-Linear Ground Deformation Detection and Monitoring using Time-Series InSAR along the Coastal Urban Areas of Pakistan

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Abstract Conventional geodetic methods rely on point measurements, which have drawbacks for detecting and tracking geologic disasters at specific locations. In this study, the time-series InSAR approach was incorporated to estimate non-linear surface deformation caused by tectonic, shoreline reclamation, and other anthropogenic activities in economically important urban regions of Pakistan's southern coast, which possesses around 270 km. The shoreline is extended from the low-populated area on the premises of the Hub River in the west to the highly populated Karachi city and Eastern Industrial Zone, where we collected the Sentinel-1A C-band data from 2017 to 2023 to address urban security and threats to human life and property. The main advantage of opting for the non-linear persistent scatterer interferometric SAR (PSInSAR) approach for this study is that it exposes minute movements without any prior consideration of conventional monitoring techniques, making it valid in continuously varying regions. A vertical displacement range of −170 mm to +80 mm per year was found, which was used to investigate the potential correlation with the most effective causative parameters of deformation. The densely populated areas of the study area experience an annual subsidence of 170 mm, and the less populated western region experiences an uplift of 82 mm annually. Land deformation varies along the coast of the study area, where the eastern region is highly reclaimed and is affected by erosion. Groundwater table-depleting regions experienced high levels of land subsidence, and tectonic activities controlled vertical displacement in the region. Major variation was detected after an earthquake occurred along fault lines. This study was designed because a non-linear approach is required to address ground movement activities acutely, and it will make it possible to plan surface infrastructure and handle issues brought on by subsidence more effectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要