Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist's Perspective.

Langmuir(2024)

引用 0|浏览1
暂无评分
摘要
Recent advancements in electron microscopy techniques have revolutionized the ability to directly visualize and understand the intricate world of supramolecular chemistry. This paper provides a concise overview of a study delving into the atomic-scale imaging of monolayer clay mineral nanosheets and their associated supramolecular complexes. The imaging is conducted by harnessing the power of aberration-corrected scanning transmission electron microscopy (STEM). Clay mineral nanosheets, with their anionic charge and ultrathin thickness (of 1 nm), serve as a stable Coulombic host material for cationic guest molecules through electrostatic interactions, facilitating exceptional stability and control during observation. By incorporation of heavy-metal atom markers coordinated within the target molecules, high-angle annular dark field STEM enables a clear visualization of these supramolecular complexes. This approach helps to overcome the limitations of graphene-based systems and expands the possibilities of atomic-scale imaging of nonperiodic molecular assemblies formed by weak supramolecular interactions. The fusion of electron microscopy techniques with the principles of supramolecular and material chemistry offers exciting opportunities for studying the structure, behavior, and properties of complex supramolecular systems. It sheds light on the intricate molecular architectures and design principles governing these systems. This study showcases the immense potential of electron microscopy in supramolecular chemistry and invites researchers from various disciplines to explore the transformative possibilities of atomic-scale imaging in the field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要